
24 The Delphi Magazine Issue 61

Actions And Action Lists
by Brian Long

Actions and action lists were
introduced with Delphi 4 in

June 1998 (in all flavours of the
product) and were apparently con-
sidered so important that they
were the first addition to the Stan-
dard page of the Component Pal-
ette since Delphi was released
back in February 1995.

However, it would appear that
these potentially very useful
components have been much
under-used by the Delphi commu-
nity. Maybe this is just because
people don’t know about them.
Maybe the TActionList component
should have been placed at the
beginning of the Standard page
rather than the end (you may have
noticed that in Delphi 5 the Frames
selector was added at the start of
the Standard page).

Anyway, for those who have
never had the time or inclination to
look into what actions do and how
they work, this article will explore
their purpose, use and internal
operation. It closes with a look at
how to install new, reusable
actions into the IDE.

What Is An Action?
Often in applications, there are
several UI mechanisms to trigger
the same functionality (or com-
mand). For example, a normal
button, a menu item and maybe a
tool button on a tool bar, or a
speedbutton on a speedbar.
Normally you set up this type of
arrangement by sharing OnClick
event handlers between the vari-
ous objects. Of course, you must
set up the captions and various

other properties of each control
individually; this also applies when
you need to disable all the controls
that can invoke the command.

An action is a non-visual compo-
nent that represents a user-
generated command. It allows you
to set up all the UI properties
related to that command in one
place, along with the code needed
to execute the command and also
code that can control whether the
command is available to the user
or not. Actions are typically man-
aged through action lists, which
are also non-visual components.

You connect actions to various
trigger controls which can invoke
the action. The UI properties and
command functionality are both
automatically propagated from the
action to these controls. If any
property of the action is modified
at any point, these changes are
also propagated. So, for example,
any time the action gets disabled,
all the related controls are dis-
abled in turn. Code that controls
whether the actions are available
or not is automatically called
during idle time, meaning that UI
controls that can invoke the action
are automatically enabled and
disabled as appropriate.

The trigger controls that are
designed to invoke the action’s
code are called action clients. The
controls affected by the action are
described as action targets.
Normally, when you create actions
in the IDE you do not explicitly
specify action targets (there is no
place to do so). Instead, the action
code implicitly affects various
action targets. We will see how
action targets gain more
significance later.

Why Should We Use Actions?
The answer to this question is
simply because they are easier to
deal with. They allow application
code to be modularised and
defined independently of the con-
trols that will invoke the code.
Actions are also automatically
updated, thereby updating the
action clients. The Delphi IDE
(from Delphi 4 onwards) is
positively chock full of action
objects. Actions are responsible
for all the tool button and menu
controls that become enabled and
disabled as circumstances change
in the Delphi IDE.

Let’s try implementing a simple
application a few times: firstly
without actions in the normal way,
then using actions. Hopefully, you
will see that actions simplify the
development of application func-
tionality and the management of a
smooth UI. The application has an
edit control (edtEntry), a button
(btnAddString) and a listbox
(lstEntries), as shown in Figure 1.
The button’s job is to add the edit’s
contents into the listbox. How-
ever, it only does this if the edit
control does not contain a blank
string or a string already contained
in the list.

To start with, our attempts will
be without actions. There are two
approaches we can choose from.
The first one is to implement the

➤ Figure 1: The application
without actions.

procedure TForm1.btnAddStringClick(Sender: TObject);
begin
if (Length(Trim(edtEntry.Text)) > 0) and
(lstEntries.Items.IndexOf(Trim(edtEntry.Text)) = -1) then
lstEntries.Items.Add(Trim(edtEntry.Text));

//Give focus back to edit
edtEntry.SetFocus;
//Highlight edit contents so it can be replaced by overtyping
edtEntry.SelectAll

end;

➤ Listing 1: Functionality and
validation in one place.

September 2000 The Delphi Magazine 25

button’s OnClick handler as shown
in Listing 1. As you can see, the
basic job of adding the text into the
listbox is done here, as is the vali-
dation of whether to perform the
job at all. In this case the button is
always enabled, but sometimes
pressing it has no effect.

In more complex situations it
could prove advantageous to split
the implementation of the job from
the validation code, as in Listing 2.
Here, the validation is performed
when the edit content is changed,
and also after adding a string into
the list. Invalid input in the list is
avoided by ensuring the button is
disabled when invalid data is in the
edit, which perhaps gives a more
intuitive user interface (see Figure
2). However, to achieve this, the
button must also be disabled in the
Object Inspector, since the edit will
start its life empty. This code can
be found in the ActionLessApp.dpr
project on the disk.

As you can see, the validation is
almost automatic, but not quite.
When the text is added to the list,
the edit’s OnChange event must be
explicitly invoked to ensure that
the button is disabled whilst the
edit contains a string contained in
the listbox.

Now think about what would be
needed if more controls could
invoke the string adding behav-
iour. You would need to share the
button’s OnClick handler with all
the other controls. You would also
need to set the Enabled property of
all the other controls in the edit’s
OnChange event handler. This would
quickly get messy to manage and
maintain. This is where actions
become very useful, although they
are just as appropriate when only a
single control invokes some
behaviour.

How Actions Are Used
You typically set up actions before
putting the action client controls
on the form. Once the actions are
defined, it is then easy to add client
controls and associate them with
the actions.

In order to rebuild this app-
lication with actions and see how
things change, let’s get some basic
background first. The full details
will be covered later.

Actions are managed by action
lists (TActionList components).
You can use as many action lists as
you like, perhaps using multiple
instances to keep actions in differ-
ent logical groups. Each action list

can be associ-
ated with a
TImageList that
contains small
images that can
optionally be
used to repre-
sent each action.
If you have set

up an image list, use the action
list’s Images property to make the
connection.

Creating Actions
Once you place an action list on a
form you can add actions using the
Action List Editor, available by
right clicking or double clicking on
it (see Figure 3). This allows you to
create new actions and new stan-
dard actions (see later for details
on standard actions).

Clicking the yellow button (or
pressing Insert) makes a new
action. Whilst selected, the Object
Inspector can be used to set up the
UI properties that represent the
action. Figure 4 shows a new action
with a number of properties
including a shortcut key (ShortCut)
and an index into the action list’s
image list (ImageIndex). The
action’s image is shown in the
action list editor.

One property that warrants
description is Category. All actions
in an action list have a category (a

procedure TForm1.btnAddStringClick(Sender: TObject);
begin
lstEntries.Items.Add(Trim(edtEntry.Text));
//Give focus back to edit
edtEntry.SetFocus;
//Highlight edit contents so it can be replaced by over-typing
edtEntry.SelectAll;
//Trigger edit's OnChange to ensure button is enabled/disabled as appropriate
edtEntry.OnChange(edtEntry)

end;
procedure TForm1.edtEntryChange(Sender: TObject);
begin
btnAddString.Enabled := (Length(Trim(edtEntry.Text)) > 0) and
(lstEntries.Items.IndexOf(Trim(edtEntry.Text)) = -1)

end;

➤ Listing 2: The functionality split from the validation.

➤ Figure 2: Prototype number 2.

➤ Figure 3:
The Action List Editor.

➤ Figure 4:
Editing an
action’s
properties.

26 The Delphi Magazine Issue 61

string) but normal actions default
to having none. You can choose
categories for each of your actions
and the action list editor will list all
categories in its left listbox. When
any given category is selected,
only the actions from that category
are listed in the right listbox.

The Object Inspector also allows
you to set up a number of events
for each action, the most
important of which are OnExecute
and OnUpdate. OnExecute should
perform the job represented by the
action. OnUpdate should verify
whether the action is still valid.

Suitable action event handlers
for an action that can work in our
application are shown in Listing 3
(they are in ActionApp.dpr on the
disk). Notice that this time, unlike
with Listing 2, the string adding
code does not need to trigger the
validation code. Instead it relies on
the code being automatically
called, which it will be (again, the
details are coming soon).

At this stage we have not speci-
fied any action clients, although
the code implicitly identifies
action targets of the edit control
and listbox. However, these are
hard-coded in source and so do not
quite fit the normal definition of
action targets (more on action
targets later).

Invoking Actions
We need a way to invoke the
action. Normal procedure would
involve adding action clients and
connecting the action to them, but
this is not strictly necessary. The
action has already defined a short-
cut (Ctrl+A). At runtime, pressing
Ctrl+A will automatically invoke
the action, if it is available (in other

words is enabled), which frankly is
rather clever.

In this application though,
action clients are required. Drop a
button on the form and use the
Actionproperty to connect it to the
only available action, actAddString.
It will immediately absorb all
appropriate properties and events
from the action, which are Caption,
Enabled, HelpContext, Hint, Visible
and OnExecute (assigned to
OnClick). These make the button
look and behave sensibly. When
the button is clicked, the action
will be invoked.

Notice that the action’s proper-
ties and events do not necessarily
tie up with similarly named proper-
ties and events in the client. This
allows more flexibility in associat-
ing actions with a whole variety of
action clients.

If the default action client invo-
cation mechanism is not suitable
(say, for example, you want a con-
trol double-clicked to invoke the
action, or the control has no Action
property) this is no problem. You
can either make the control’s
favoured event share the action’s
OnExecute event handler, if compat-
ible, or you can make an explicit
call to the action’s Execute method
in the control’s event handler.

The action’s OnUpdate event is
regularly called during application

idle time (again, full details
coming later) and so if any of the
validation conditions fail, the
action’s Enabledproperty is set to
False. This change propagates to
the button, causing it to become
disabled, meaning that when the
action is disabled the action
client cannot trigger the action.
The program running looks very
much like Figure 2.

ActionApp2.dpr is another pro-
ject, much like ActionApp.dpr
except that a TBitBtn is used
instead of a TButton. Also, it
employs a popup menu for the
listbox, a main menu and a toolbar
with a tool button. You will not be
surprised to learn that each of
these controls is hooked up to the
action to prove a point. The
action’s properties propagate to
all the action clients (see Figure 5)
and when the action is disabled, all
the action clients instantly disable.

Also, these other controls use
more of the action’s properties.
For example, when a TMenuItem in
the Menu Designer is connected to
the action, the ShortCutproperty is
copied along with Checked and
ImageIndex. To make sure the menu
item’s ImageIndex had something
to index into, both the popup
menu and main menu were initially
connected to the same image list
as the action list.

In the case of a TToolButton, the
action’s Checked property value is
copied to the Down property, but
most of the others go through to
the correspondingly named prop-
erty. Tool buttons also have an
ImageIndex property so the toolbar
was also connected to the image
list.

One important point about a
tool button is worth making.
Having connected the toolbar to
the image list, the first tool button
added to the toolbar will automati-
cally display the action’s image.
This is just coincidental. The first
tool button gets an ImageIndex of 0
automatically, the second gets an
ImageIndex of 1 and so on. The tool
button will still need to be con-
nected to the action like any other
action client.

procedure TForm1.actAddStringExecute(Sender: TObject);
begin
lstEntries.Items.Add(Trim(edtEntry.Text));
//Give focus back to edit
edtEntry.SetFocus;
//Highlight edit's content so it can be replaced by over-typing
edtEntry.SelectAll;

end;
procedure TForm1.actAddStringUpdate(Sender: TObject);
begin
(Sender as TAction).Enabled := (Length(Trim(edtEntry.Text)) > 0) and
(lstEntries.Items.IndexOf(Trim(edtEntry.Text)) = -1)

end;

➤ Listing 3:
Action event handlers.

➤ Figure 5:
The application with actions.

28 The Delphi Magazine Issue 61

You should be able to see the
main point of action components
now. Being automatically vali-
dated, they give a smooth, reactive
user interface with consistency
amongst controls that invoke the
same functionality.

Standard Actions
The actions that we have been
manually setting up are sometimes
called custom actions, since the
Delphi developer customises their
behaviour and properties. Delphi
also comes with a number of pre-
defined actions, with built-in
behaviour and property values,
which are referred to as standard
actions: so named since their
behaviour and attributes are built
in as standard.

These standard actions provide
commonly useful behaviour, such
as clipboard interaction, MDI
window commands and help com-
mands. Table 1 shows the standard
actions that are supplied with
Delphi 4 and 5.

You create standard actions
from the Action List Editor. How-
ever, instead of pressing the yellow
button, you should drop down the
arrow next to it and choose New
Standard Action... from the drop
down menu (or press Ctrl+Insert).
This takes you to a dialog that lists
all the available standard actions
(shown in Figure 6).

Assuming you have an image list
associated with your action list,
when a standard action is created
it will add its associated image into

your image list and set
its ImageIndex prop-
erty to the position of
it, assuming it has one.
It also sets up its other
property values to
predefined values
(see Figure 7).

Some of these stan-
dard actions have an
additional property
that can be used to
specify a dedicated
target control. For
example, all the
dataset actions have a

published DataSource property
that appears on the Object Inspec-
tor. You can optionally use this
property to connect the actions to
one specific data source compo-
nent but, again, this is not
required. If you leave the property
blank, the magic of action handling
will allow the action to find the first
data source on the active form at
runtime.

Similarly, all the standard edit
actions have a public Editproperty
and the standard window actions
have a Form public property. You
can therefore programmatically tie
an edit action to a fixed edit
control, or a window action to one
specific form. But, if you do not, the
edit action will act on the active
edit control (if there is one) and the
window action will act on the
active MDI form (if there is one).

Classes Involved With Actions
There are a lot of classes associ-
ated with actions and so, rather

than simply listing them out, I will
try and give an overview that
encompasses them all. If you have
no desire to know more about the
internal workings of actions, or
how to make reusable standard
actions, you should perhaps skip
the rest of this article. It is
dirty-hand territory from here on
in.

Action Classes
The action class hierarchy starts
with TBasicAction (see Figure 8 and
Listing 4), which can be used in
conjunction with an action client
that is neither a menu nor a con-
trol. TContainedAction adds sup-
port to allow an action to appear in

➤ Facing page, Table 1: Standard
actions available in Delphi.

TBasicAction = class(TComponent)
private
FOnChange: TNotifyEvent;
FOnExecute: TNotifyEvent;
FOnUpdate: TNotifyEvent;

protected
FClients: TList;
procedure Change; virtual;
procedure SetOnExecute(Value: TNotifyEvent); virtual;
property OnChange: TNotifyEvent read FOnChange write FOnChange;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function HandlesTarget(Target: TObject): Boolean; virtual;
procedure UpdateTarget(Target: TObject); virtual;
procedure ExecuteTarget(Target: TObject); virtual;
function Execute: Boolean; dynamic;
procedure RegisterChanges(Value: TBasicActionLink);
procedure UnRegisterChanges(Value: TBasicActionLink);
function Update: Boolean; virtual;
property OnExecute: TNotifyEvent read FOnExecute write SetOnExecute;
property OnUpdate: TNotifyEvent read FOnUpdate write FOnUpdate;

end;

➤ Figure 6: The standard action
choice dialog.

➤ Figure 7: Instances of each of
Delphi 5’s standard actions.

➤ Listing 4: The TBasicAction base action class.

September 2000 The Delphi Magazine 29

Standard Action Class Name Introduced In Defined In Category Purpose

TEditCut Delphi 4 StdActns.pas Edit Cuts highlighted text from the target to the
Clipboard

TEditCopy Delphi 4 StdActns.pas Edit Copy highlighted text to the Clipboard

TEditPaste Delphi 4 StdActns.pas Edit Pastes text from the Clipboard to the target
and ensures that the Clipboard is enabled for
the text format

TEditSelectAll Delphi 5 StdActns.pas Edit Selects all the text in the target edit control

TEditUndo Delphi 5 StdActns.pas Edit Undoes the last change made to the target edit
control

TEditDelete Delphi 5 StdActns.pas Edit Deletes the highlighted text

TWindowClose Delphi 4 StdActns.pas Window Closes the active MDI child form

TWindowCascade Delphi 4 StdActns.pas Window Cascades the MDI child forms

TWindowTileHorizontal Delphi 4 StdActns.pas Window Arranges MDI child forms so that they are all
the same size, tiled horizontally

TWindowTileVertical Delphi 4 StdActns.pas Window Arranges MDI child forms so that they are all
the same size, tiled vertically

TWindowMinimizeAll Delphi 4 StdActns.pas Window Minimises all of the MDI child forms

TWindowArrange Delphi 4 StdActns.pas Window Arranges the icons of minimised MDI child
forms

THelpContents Delphi 5 StdActns.pas Help Brings up the Help Topics dialog on the tab
(Contents, Index or Find) that was last used

THelpTopicSearch Delphi 5 StdActns.pas Help Brings up the Help Topics dialog on the Index
tab

THelpOnHelp Delphi 5 StdActns.pas Help Brings up the Microsoft help file on how to use
Help

TDataSetFirst Delphi 4 DBActns.pas Dataset Sets the current record to the first record in the
dataset

TDataSetPrior Delphi 4 DBActns.pas Dataset Sets the current record to the previous record

TDataSetNext Delphi 4 DBActns.pas Dataset Sets the current record to the next record

TDataSetLast Delphi 4 DBActns.pas Dataset Sets the current record to the last record in the
dataset

TDataSetInsert Delphi 4 DBActns.pas Dataset Inserts a new record before the current record,
and sets the dataset into dsInsert state so it can
be modified

TDataSetDelete Delphi 4 DBActns.pas Dataset Deletes the current record and makes the next
record (if there is one, otherwise the previous
record) the current record

TDataSetEdit Delphi 4 DBActns.pas Dataset Puts the dataset into dsEdit state so that the
current record can be modified

TDataSetPost Delphi 4 DBActns.pas Dataset Writes changes in the current record to the
dataset

TDataSetCancel Delphi 4 DBActns.pas Dataset Cancels the edits to the current record, restores
the record display to its condition prior to
editing, and turns off dsInsert or dsEdit states if
they are active

TDataSetRefresh Delphi 4 DBActns.pas Dataset Refreshes the buffered data in the associated
dataset by calling its Refresh method

THintAction Delphi 4 StdActns.pas None Undocumented in Delphi 4 and 5, though see
the Component Hints On Status Bars entry in
this month’s Delphi Clinic).

30 The Delphi Magazine Issue 61

an action list. It also adds the Cate-
gory property to allow actions to
be categorised. TCustomAction adds
the UI properties that can be
propagated to action clients such
as menus and controls, although it
has no published properties.
TAction publishes all of the
interesting properties of TCustom-
Action.

You will notice that THintAction
is also sitting in the hierarchy (and
was listed in Table 1). This class is
not documented (at least not in
Delphi 4 or 5) as it is intended for
internal VCL use. However, we can
use it for our own purposes as is
explained in the Delphi Clinic in
this issue.

Action Link Classes
Whilst apparently changing the
subject, but not really, I will talk
briefly about data-aware controls.
Data-aware controls and data
source components appear to be
directly connected through the
data aware controls’ DataSource
property. However, this is not
actually the case. Instead, data link
objects are employed in any data-
aware control that implements

a DataSourceproperty to act
as the liaison officer, repre-
sent the link to the dataset
and to respond to data
events. Similarly, action cli-
ents that implement an
Action property use action
link objects to connect
action components to their
properties (such as Cap-
tion, Hint and ShortCut).

Action links exist as various
classes in a mini-hierarchy (see
Figure 9) with TBasicActionLink at
the root (see Listing 5). This class
takes the client object as a con-
structor parameter (although it
does not store it) and the related
action is available as the Action
property. It sets up the basic struc-
ture of a connection between an
action and a client. It defines vir-
tual Execute and Update methods
which call the associated action’s
Execute and Update methods. If the
action has an OnExecute event han-
dler, Execute returns True and if it
has an OnUpdate handler, Update

returns True. It also
has an OnChange
event triggered
when the proper-
ties of the action
change.

TActionLink adds
in basic support
for managing the

connection between an action’s
properties and the action client
properties (see Listing 6). It has
elementary support for Caption,
Checked, Enabled, HelpContext, Hint,
ImageIndex, ShortCut and Visible.
The IsXXXXLinked methods all
return True if Action has been
assigned a TCustomAction or
descendant, whilst the SetXXXX
methods do nothing. A TActionLink
can be used as a base class for an
action link that can be used when
the action client is neither a con-
trol nor a menu (which are catered
by descendant action link classes).

TMenuActionLink adds specific
support for menu item clients by
overriding AssignClient (which
stores the client in a private data
field) and IsOnExecuteLinked from
Listing 5, as well as all the virtual
methods in Listing 6. This allows
actions to map their UI properties
to equivalent menu item proper-
ties. TControlActionLink does a
similar job for generic controls,
although it only deals with Caption,
Enabled, Hint, Visible and
OnExecute (which maps to the
client’s OnClick event).

The other action link classes add
support for various other specific
properties of their indented client
controls. For example TToolButt-
onActionLink works with tool but-
tons, adding a link between the
action’s Checked property and the
tool button’s Down property (note
the difference in name).

Being aware of action links and
how they fit in is generally useful,
however getting down to the
nitty-gritty of how they operate is
only important if you wish to write
interesting new components with

standard action classesstandard action classes

TComponentTComponent

TBasicActionTBasicAction

TContainedActionTContainedAction

TCustomActionTCustomActionTHintActionTHintAction

TActionTAction

TObjectTObject

TBasicActionLinkTBasicActionLink

TActionLinkTActionLink

TControlActionLinkTControlActionLinkTMenuActionLinkTMenuActionLink

TWinControlActionLinkTWinControlActionLink

TButtonActionLinkTButtonActionLink

TToolButtonActionLinkTToolButtonActionLink

TBasicActionLink = class(TObject)
private
FOnChange: TNotifyEvent;

protected
FAction: TBasicAction;
procedure AssignClient(AClient: TObject); virtual;
procedure Change; virtual;
function IsOnExecuteLinked: Boolean; virtual;
procedure SetAction(Value: TBasicAction); virtual;
procedure SetOnExecute(Value: TNotifyEvent); virtual;

public
constructor Create(AClient: TObject); virtual;
destructor Destroy; override;
function Execute: Boolean; virtual;
function Update: Boolean; virtual;
property Action: TBasicAction read FAction write SetAction;
property OnChange: TNotifyEvent read FOnChange write FOnChange;

end;

➤ Listing 5: The TBasicActionLink base action link class.

➤ Figure 9:
The action link
class hierarchy.

➤ Figure 8: The action
class hierarchy.

32 The Delphi Magazine Issue 61

new properties which you want
controlled by actions. Given that
we will not be covering that subject
in this article, it is safe to leave
action links alone now.

How The Action
Architecture Works
Now that we have seen the basic
use of actions and had an overview
of the classes involved, let’s look in
more detail at how they work
inside a Delphi application. On our
travels you will see that the
Borland developers have provided
many points that can be used to
hook into action functionality. The
execution path of actions pre-
sented here will be quite detailed,
to give a full understanding of what
goes on.

Action is defined as a public
property in TControl (it is pub-
lished by a number of descendant
classes) and a published property
in TMenuItem. When you assign an
action component to an action cli-
ent’s Action property the following
sequence of events occurs.

In the case of a control,
csActionClient is added to its
ControlStyle set property. Then,
all action clients check if their pro-
tected ActionLink property refers
to an action link object. If not, it
creates an action link using the
class reference returned by the
protected dynamic GetActionLink-
Class method. This returns an
appropriate action link class of
which an instance is created.

The action link is given the
action object and its OnChange
event is handled by an action client
method that copies the key action
properties to the action client
properties. Since the action has
just been set, this routine (a pro-
tected dynamic procedure called
ActionChange) is triggered to get
the current action properties
copied across. At this point, the
client has got the action properties
and an appropriate action link
object.

How Actions Are Invoked
Now we need to see what happens
when an action is invoked. Remem-
ber this can happen by an action
client invoking it, such as a button

being clicked, or by any piece of
code calling the action’s Execute
method. It can also happen by the
user pressing the shortcut key
associated with an action, which
need not be connected to any
action client. By the end of this
section we should be able to see
how each of these possibilities
works.

We start by taking the case of an
action client invoking the action,
using an example of a button
hooked up to an action. When you
look at a button set up as an action
client you can see the Object
Inspector showing the OnClick
event connected to the action’s
OnExecute event handler. You
might therefore understandably
think that clicking the button will
simply call the action’s OnExecute
handler. But it is not as simple as
that. Oh no.

Instead, assuming that the
OnClick event has not been
changed, the action link’s virtual
Execute method is called (see List-
ing 7). The default implementation
of this in TBasicActionLink (which
is not overridden in any of the
descendant classes) calls the
action’s dynamic Execute method.
So, at this point, the action client
invoking the action now looks
just like the same code explicitly

invoking an action by calling the
Execute method.

The base action class implemen-
tation of Execute tries to call the
action’s OnExecute event handler.
Both Execute methods return True
if the handler exists and False if
not. However, TContainedAction
overrides Execute to perform more
interesting logic. Since contained
actions can be managed by action
lists, they broaden the potential
for response to an action by a wide
margin.

Firstly, the action defers to its
action list (if it has one) by calling
its ExecuteAction method and
passing itself as a parameter. The
action list’s ExecuteAction method
is implemented in order to call
its OnExecuteAction event handler
if it is present. If the event handler
sets its Handled parameter to True,
the story ends here. Otherwise, it
goes further. Notice that all of
the actions in an action list will
trigger the action list’s OnExecute-
Action event handler and so some
generic handling or action tracking
can be implemented there if it is
needed.

Next, the Application object’s
OnExecuteAction event is triggered

TActionLink = class(TBasicActionLink)
protected
function IsCaptionLinked: Boolean; virtual;
function IsCheckedLinked: Boolean; virtual;
function IsEnabledLinked: Boolean; virtual;
function IsHelpContextLinked: Boolean; virtual;
function IsHintLinked: Boolean; virtual;
function IsImageIndexLinked: Boolean; virtual;
function IsShortCutLinked: Boolean; virtual;
function IsVisibleLinked: Boolean; virtual;
procedure SetCaption(const Value: string); virtual;
procedure SetChecked(Value: Boolean); virtual;
procedure SetEnabled(Value: Boolean); virtual;
procedure SetHelpContext(Value: THelpContext); virtual;
procedure SetHint(const Value: string); virtual;
procedure SetImageIndex(Value: Integer); virtual;
procedure SetShortCut(Value: TShortCut); virtual;
procedure SetVisible(Value: Boolean); virtual;

end;

➤ Listing 6: The TActionLink class.

procedure TControl.Click;
begin
{ Call OnClick if assigned and not equal to associated action's OnExecute.
If associated action's OnExecute assigned then call it, otherwise, call
OnClick. }

if Assigned(FOnClick) and (Action <> nil) and
(@FOnClick <> @Action.OnExecute) then
FOnClick(Self)

else if not (csDesigning in ComponentState) and (ActionLink <> nil) then
ActionLink.Execute

else if Assigned(FOnClick) then
FOnClick(Self);

end;

➤ Listing 7: The implementation
of TControl.Click.

September 2000 The Delphi Magazine 33

if present. Similarly, if the Handled
parameter is set to True, process-
ing ends there, otherwise it carries
on. Note that the Application
object’s OnExecuteAction event will
be triggered for all actions in the
application that are not handled by
their corresponding action list,
providing an option for completely
generic action handling, or alter-
natively a way to intercept actions
not handled by their action list.

If the action still has momentum,
it at last tries to execute its own
OnExecute event handler. If no han-
dler was set up, which will be the
case for standard actions, it goes
still further. It packages itself up in
a CM_ACTIONEXECUTE message which
gets sent to the Application
object’s window as a cry for help in
trying to find a target to execute
against. The Application object’s
message handler calls its Disp-
atchAction method, which tries to
locate a target on the active form
and, failing that, the main form.

It does this by sending the same
message to each form in turn,
assuming it exists. The form then
verifies that it is visible and, if so,
tries to find a target control.
Firstly, it checks whether the
active control is a suitable target
by passing the action object to the
control’s ExecuteAction method. If
not, the form itself is tested to see if
it might be a target, passing the
action to its own ExecuteAction
method. If there is still no joy it
calls ExecuteAction for every visi-
ble control on the form, stopping if
it finds a match.

The implementation of a compo-
nent’s ExecuteAction method typi-
cally involves the component
passing itself to the action’s
HandlesTarget method. If this
returns True, we have a suitable
target and so the target is passed
to the action’s ExecuteTarget
method.

This way, an action target can be
found for an action without the
target knowing anything about the
action in advance. However,
ExecuteAction can be overridden to
allow any control to pick up spe-
cific actions of interest, if needed,
without the action knowing about
the target. It works both ways.

If the main form does not suc-
cessfully handle the message then
the final step is reached. If the
action is a TCustomAction (or inher-
ited from that class), is currently
enabled, has no OnExecute handler
and its DisableIfNoHandler prop-
erty is True, then the action is dis-
abled. DisableIfNoHandler is a
public property defined by
TCustomAction which defaults to
True.

TCustomAction also overrides
this Execute behaviour from
TContainedAction to call the virtual
Update method to update the
action’s state before setting off on
the possibly lengthy trek to exe-
cute the action. This ensures the
action’s state is up-to-date, based
upon the immediately current
state of the application before
being executed.

The case we have not looked at
yet is where an action’s shortcut
key is pressed, causing the action
to be invoked, regardless of
whether an action client has been
set up or not. Whenever a key-
stroke is pressed and is not han-
dled by the active control or a
suitable popup menu item, it is
passed to the underlying form’s
IsShortCut method.

The form tries to handle the
keystroke through its OnShortCut
event or, failing that, through its
main menu. If nothing wants it, all
action lists owned by the form are
checked for a matching shortcut.
The action list checks each of its
actions and if a match is found, the
action’s Execute method is called.

If no suitable action is found on
the current form, a CM_APPKEYDOWN
message is sent to the Application
object, which calls its own
IsShortCut method. This tries to
handle the keystroke in its own
OnShortCut event and if that fails it
calls the main form’s IsShortCut
method.

This way a shortcut key can be
picked up by an action on the
active form or the main form,
assuming a menu item or OnShort-
Cut event does not handle it first.

As you can see, the VCL goes to a
lot of trouble to service actions if
they do not have an OnExecute
event or even an action client,

which standard actions tend not
to. It is this concerted search effort
that enables standard actions to
work without necessarily being
connected to an action client.
They can typically operate on the
active control (or some other suit-
able control) on the active form
thanks to the VCL’s inbuilt target-
searching logic.

How Actions Are Updated
As I mentioned, TCustomAction
updates an action just before
trying to execute it. However, they
also get updated at another time.
When an application has pro-
cessed all of its pending messages
it transitions into an idle state.
Windows wakes it up when
another message arrives. Just
before going idle the Application
object’s Idle method calls its
OnIdle event handler and then
calls the DoActionIdle method.

DoActionIdle loops through all
enabled forms on-screen calling
UpdateActions, which calls the vir-
tual InitiateAction method for
itself, all top level, visible menu
items and then all visible controls
with csActionClient in Control-
Style (in other words all action cli-
ents). InitiateAction calls the
Update method of the action link, if
there is one which calls the
action’s Update method.

The TBasicAction implementa-
tion of Update either calls OnUpdate
if it exists and returns True, other-
wise it returns False. TContained-
Action overrides Update to do
much the same sort of thing as
with Execute. It checks to see if the
action list or Application object
wishes to deal with updating the
action in their OnUpdateAction
events. Then it tries its own
OnUpdate event handler. If there is
no handler it asks the Application
object to help find a target control
to update itself against.

The action is passed to each pos-
sible target’s UpdateAction method
which calls HandlesTarget. If the
action claims to handle the target
then the action’s UpdateTarget
method is called.

This all means that every time
a user’s input (key presses,
mouse clicks, and so on) have

34 The Delphi Magazine Issue 61

been serviced and the program
goes idle waiting for the next mes-
sage, all actions connected to
action clients are updated. Conse-
quently, this means that the action
clients always have an up-to-date
representation of the action prop-
erties. Additionally, all actions
(regardless of whether they are
connected to clients or not) are
updated just before they execute.

Because the CPU is so fast, the
application will go idle between
each key press and mouse click,
meaning that actions are updated
very regularly. The implication of
this is that you must ensure your
action update code is not time-
intensive, to avoid having a slug-
gish application.

How Standard
Actions Are Made
We have seen how to make custom
actions and how to use standard
actions, so now we turn our atten-
tion to making new standard
actions of our own. The general
idea is fairly straightforward,
although there are a few twists
here and there.

The plan is to inherit a class from
TAction and override three meth-
ods. HandlesTarget decides
whether we handle a given target
control. UpdateTarget should check
appropriate criteria and update

the action properties if needed.
ExecuteTarget contains the code
represented by the standard
action. These methods have all
been mentioned before and are all
defined as virtual in TBasicAction
where they do nothing except
HandlesTarget, which returns
False, indicating nothing is
handled.

If needed, the action can define a
property to link it to a specific
target component. If this is done
you must be careful to hook into
the standard notification mecha-
nism so you are informed if the
linked component is destroyed.

The standard actions we will
develop will enable the user to
scroll through the tabs on a tab
control or the pages on a page con-
trol (both of which inherit from
TCustomTabControl). A property will
be made available to hook either
type of control to the action,
although this will not be strictly
necessary, as the action knows it
can handle any tab control or page
control thrown at it.

We will make two actions,
TNextTab and TPriorTab. These will
have dedicated shortcuts of
Ctrl+Tab and Ctrl+Shift+Tab as
used by the IDE. TNextTab will
select the next available tab or
page and will go back to the first
one if the last one was selected.
Similarly, TPriorTab will select the
previous tab, going to the last one
if the first one is already selected.

There will be a certain amount of
commonality between these
actions, so a base class will be
defined first called TTabAction. As
Listing 8 shows, it defines a pub-
lished TabControl property that
allows a tab control or page con-
trol to be assigned, storing the
object reference in FTabControl. If a
new control is assigned, it is told to
make sure we are notified if it gets
destroyed.

HandlesTarget is defined to work
like other standard actions. If we
have a TabControl property value,
we only claim to handle the offered
target if it is the same control. If
TabControl is blank, we will handle
any tab control or page control.
The code is being picky about
control types as TTabControl and
TPageControl use different prop-
erties for selecting tabs and
returning the number of tabs.
TTabControl uses TabIndex and
Tabs.Count, whilst TPageControl
uses ActivePage and PageCount.
Other TCustomTabControl descen-
dants could introduce yet more
indexing options which the code
would not know how to deal with.

UpdateTarget disables the target
if there is only one available tab.
Notice that the tab count is also
given by different properties for
tab controls and page controls.

Now we can implement the real
actions, as per Listing 9. You can
see the tab index or page index
being modified as appropriate in

type
TTabAction = class(TAction)
private
FTabControl: TCustomTabControl;

protected
procedure SetTabControl(Value: TCustomTabControl);
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

public
function HandlesTarget(Target: TObject): Boolean;
override;

procedure UpdateTarget(Target: TObject); override;
published
property TabControl: TCustomTabControl
read FTabControl write SetTabControl;

end;
procedure TTabAction.Notification(AComponent: TComponent;
Operation: TOperation);

begin
//Set target control property to nil if target is destroyed
if (AComponent = FTabControl) and (Operation = opRemove)
then FTabControl := nil

end;
procedure TTabAction.SetTabControl(Value: TCustomTabControl);
begin
if Value <> FTabControl then begin
FTabControl := Value;
//If we have a target control, request notification
//so we will be told if it is destroyed
if Assigned(Value) then
Value.FreeNotification(Self)

end;

end;
function TTabAction.HandlesTarget(Target: TObject): Boolean;
begin
//If we have a specific target and it matches
//the passed control, we will accept it
if Target = FTabControl then
Result := True

else
//If we have no specific target, but the passed
//control is of an acceptable type, then we accept it
if (FTabControl = nil) and ((Target is TTabControl) or
(Target is TPageControl)) then
Result := True

else
Result := False;

end;
procedure TTabAction.UpdateTarget(Target: TObject);
begin
//Make sure tab control has more than one tab
if Target is TTabControl then
Enabled := TTabControl(Target).Tabs.Count > 1

else
//Make sure page control has more than one page
if Target is TPageControl then
Enabled := TPageControl(Target).PageCount > 1

else
//No other TCustomTabControl derivative is understood
Enabled := False;

end;

➤ Listing 8: The common base
class for the standard actions.

36 The Delphi Magazine Issue 61

the ExecuteTarget methods. This
code can be found in the file
TabActns.pas, which has been
added into the TabActions40.dpk
and TabActions50.dpk runtime
packages on this month’s disk, for
use with Delphi 4 and 5 respec-
tively. Don’t forget to place the
compiled package (the .BPL file) in
a directory on the path to allow
Delphi to see it.

Initialising Standard Actions
Apart from initialising their prop-
erties, the actions are now ready to
be registered. Typically, compo-
nents perform property initialis-
ation in their constructors. This
would work fine for these actions
as well except for the associated
image.

You may recall that standard
actions can copy their image into
the image list associated with your
action list (see Figure 7 for a
reminder). In order to allow our
actions to be just as friendly, we
initialise the properties in a
different way to normal
components.

Registering Standard Actions
To register standard actions in the
IDE, you call RegisterActions, pass-
ing a category, a list of action
classes and, optionally, a data
module class. The data module is
used to pre-initialise the action
properties and image. It works like
this.

You make a data module, then
drop an image list onto it, which
you fill with images for your stan-
dard actions. Next, you place an
action list on the data module and
hook it up to the image list. The

idea is that you then use the Action
List Editor to create instances of
your new standard actions, whose
properties you can initialise as you
like. This data module class is then
passed as the third parameter to
RegisterActions.

However, if you think about this,
in order to get your standard
actions created through the Action
List Editor they must first be regis-
tered so that the IDE knows about
them. So what we can do is ignore
the data module issue to start with
and register the actions on their
own (we can worry about the data
module later).

This is done with a normal IDE
registration routine in a registra-
tion unit (TabActnsReg.pas). The
routine looks much like the one in
Listing 10, but with nil passed in
place of the data module class. The
registration unit is added to a
design-time package (file
DCLTabActions40.dpk for Delphi 4
or DCLTabActions50.dpk for

Delphi 5, both on this month’s disk
of course) which is compiled and
installed.

Standard Actions
And Data Modules
At this point the IDE knows about
the new standard actions so the
data module can now be set up. A
suitable data module called
TabActionsModule is in the unit
TabActionsRegModule.pas which
should be added to the
design-time package. The image
list can now be set up to contain
appropriate images. The action list
can be added and connected to the
image list.

The Action List Editor can be
used to create an instance of each
of our new standard actions, and
their properties can be set as
required. Figure 10 shows one of
the actions fully set up on the data

type
TPriorTabAction = class(TTabAction)
public
procedure ExecuteTarget(Target: TObject); override;

end;
TNextTabAction = class(TTabAction)
public
procedure ExecuteTarget(Target: TObject); override;

end;
procedure TPriorTabAction.ExecuteTarget(Target: TObject);
begin
if Target is TTabControl then
with TTabControl(Target) do
TabIndex := (TabIndex - 1 + Tabs.Count) mod Tabs.Count

else
if Target is TPageControl then

with TPageControl(Target) do
ActivePage := Pages[(ActivePage.TabIndex - 1 +
PageCount) mod PageCount]

end;
procedure TNextTabAction.ExecuteTarget(Target: TObject);
begin
if Target is TTabControl then
with TTabControl(Target) do
TabIndex := (TabIndex + 1) mod Tabs.Count

else
if Target is TPageControl then
with TPageControl(Target) do
ActivePage :=
Pages[(ActivePage.TabIndex + 1) mod PageCount]

end;

➤ Listing 9:
New standard actions.

➤ Listing 10: Registering the
actions.

procedure Register;
begin
RegisterActions('Tab', [TNextTabAction, TPriorTabAction], TTabActionsModule)

end;

➤ Figure 10: New standard
actions being set up.

September 2000 The Delphi Magazine 37

module, with all its custom proper-
ties on the Object Inspector.

Now all that is left is to modify
the registration routine to refer to
the data module class. Listing 10
shows the final version. One final
compile of the design-time package
and the job is done. Two new
fully-fledged standard actions are
available for use.

You are now free to make a new
application with a tab control
and/or a page control on it, set up
an action list with both the new
actions in and test them out. You
have the option of tying the actions
to one of these target controls, but
this is not necessary. You also
have the option of connecting the

action to a specific action client,
but similarly this is not necessary
(they have a specified shortcut
after all).

At runtime pressing Ctrl+Tab or
Ctrl+Shift+Tab, or pressing the
action client if there is one, will
invoke the corresponding action
which will act either on the control
connected to the TabControl prop-
erty if there is one. If not, it will act
on the focused control or the first
suitable control encountered.

Summary
Actions represent a very conve-
nient and manageable way to
implement user-driven functional-
ity that can be invoked in a variety

of ways. Whilst currently under-
used by many developers, hope-
fully as more people become
aware of their power and benefit,
they will become more common-
place in Delphi application devel-
opment.

Brian Long is a UK-based free-
lance consultant and trainer. He
spends most of his time running
Delphi and C++Builder training
courses for his clients, and doing
problem-solving work for them.
Brian is at brian@blong.com

Copyright © 2000 Brian Long
All rights reserved

	What Is An Action?
	Why Should We Use Actions?
	How Actions Are Used
	Creating Actions
	Invoking Actions
	Standard Actions
	Classes Involved With Actions
	Action Classes
	Action Link Classes
	How The Action Architecture Works
	How Actions Are Invoked
	How Actions Are Updated
	How Standard Actions Are Made
	Initialising Standard Actions
	Registering Standard Actions
	Standard Actions And Data Modules
	Summary

